Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi.

نویسندگان

  • V R Stoldt
  • A Sonneborn
  • C E Leuker
  • J F Ernst
چکیده

We identified a gene of the fungal pathogen Candida albicans, designated EFG1, whose high-level expression stimulates pseudohyphal morphogenesis in the yeast Saccharomyces cerevisiae. In a central region the deduced Efg1 protein is highly homologous to the StuA and Phd1/Sok2 proteins that regulate morphogenesis of Aspergillus nidulans and S. cerevisiae, respectively. The core of the conserved region is homologous to the basic helix-loop-helix (bHLH) motif of eukaryotic transcription factors, specifically to the human Myc and Max proteins. Fungal-specific residues in the bHLH domain include the substitution of an invariant glutamate, responsible for target (E-box) specificity, by a threonine residue. During hyphal induction EFG1 transcript levels decline to low levels; downregulation is effected at the level of transcriptional initiation as shown by a EFG1 promoter-LAC4 fusion. A strain carrying one disrupted EFG1 allele and one EFG1 allele under the control of the glucose-repressible PCK1 promoter forms rod-like, pseudohyphal cells, but is unable to form true hyphae on glucose-containing media. Overexpression of EFG1 in C. albicans leads to enhanced filamentous growth in the form of extended pseudohyphae in liquid and on solid media. The results suggest that Efg1p has a dual role as a transcriptional activator and repressor, whose balanced activity is essential for yeast, pseudohyphal and hyphal morphogenesis of C. albicans. Functional analogies between Efg1p and Myc are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans.

Efg1p in the human fungal pathogen Candida albicans is a member of the conserved APSES class of proteins regulating morphogenetic processes in fungi. We have analyzed the importance for hyphal morphogenesis of a putative phosphorylation site for protein kinase A (PKA), threonine-206, within an Efg1p domain highly conserved among APSES proteins. Alanine substitution of T206, but not of the adjac...

متن کامل

Functional Importance of the DNA Binding Activity of Candida albicans Czf1p

The human opportunistic pathogen Candida albicans undergoes a reversible morphological transition between the yeast and hyphal states in response to a variety of signals. One such environmental trigger is growth within a semisolid matrix such as agar medium. This growth condition is of interest because it may mimic the growth of C. albicans in contact with host tissue during infection. During g...

متن کامل

Morphogenesis, adhesive properties, and antifungal resistance depend on the Pmt6 protein mannosyltransferase in the fungal pathogen candida albicans.

Protein mannosyltransferases (Pmt proteins) initiate O glycosylation of secreted proteins in fungi. We have characterized PMT6, which encodes the second Pmt protein of the fungal pathogen Candida albicans. The residues of Pmt6p are 21 and 42% identical to those of C. albicans Pmt1p and S. cerevisiae Pmt6p, respectively. Mutants lacking one or two PMT6 alleles grow normally and contain normal Pm...

متن کامل

Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator.

Chlamydospore formation of the fungal pathogen Candida albicans was found to depend on the Efg1 protein, which regulates the yeast-hyphal transition. Isogenic mutants lacking EFG1 or encoding T206A and T206E variants did not differentiate chlamydospores, while cek1, cph1, or tpk2 mutations had no effect. Furthermore, filamentation of efg1 cph1 double mutants in microaerophilic conditions sugges...

متن کامل

Expression of the Candida albicans morphogenesis regulator gene CZF1 and its regulation by Efg1p and Czf1p.

The ability of Candida albicans to transit between different cellular morphologies is believed to be important for virulence. Morphological transitions occur in response to a variety of environmental signals. One such signal is encountered when cells are grown in a semisolid matrix. An important regulator of cellular morphology is the putative transcription factor CZF1. Here we demonstrate that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 1997